Programmation
en Logique

Lars Hupel
Lambda Days
2019-02-21

INNOQ

e V|







talk(lars) :-
joke(funny), % Llaugh
introduction(prolog),
features(cool),
audience(Questions),
answer(Questions).



talk(lars) :-
joke(funny), % laugh
introduction(prolog),
features(cool),
audience(Questions),
answer(Questions).



Who invented Prolog?

€€ 1. The world is everything that is the case.
1.1 The world is the totality of facts, not of things.
1.17 The world is determined by the facts, and by these being all the 39
facts.



LUDWIG WITTGENSTEIN

TRACTATUS
LoGico-

Who invented Prolog? i cos

€€ 1. The world is everything that is the case.
1.1 The world is the totality of facts, not of things.
1.17 The world is determined by the facts, and by these being all the 39
facts.

- Ludwig Wittgenstein, 1918



talk(lars) :-
joke(funny), % laugh
introduction(prolog),
features(cool),
audience(Questions),
answer(Questions).



Who invented Prolog?

® appeared in the early 70s in France
® original developers: Alain Colmerauer and Philippe Roussel
® used the .pl extension before Perl

® radically different programming paradigm




A brief primer on Prolog

1. Prolog programs are sequences of rules (or clauses).



A brief primer on Prolog

1. Prolog programs are sequences of rules (or clauses).
2. Rules can have arguments.



A brief primer on Prolog

1. Prolog programs are sequences of rules (or clauses).
2. Rules can have arguments.
3. Rules can have conditions.



A brief primer on Prolog

A wDN

Prolog programs are sequences of rules (or clauses).
Rules can have arguments.

Rules can have conditions.

Programs can be queried.



A brief primer on Prolog

a B w N

Prolog programs are sequences of rules (or clauses).
Rules can have arguments.

Rules can have conditions.

Programs can be queried.

Anything that is not in the program is not true.



A brief primer on Prolog

oA W N

Prolog programs are sequences of rules (or clauses).
Rules can have arguments.

Rules can have conditions.

Programs can be queried.

Anything that is not in the program is not true.
Queries may alter the program HSR



A brief primer on Prolog

oA W N

Prolog programs are sequences of rules (or clauses).
Rules can have arguments.
Rules can have conditions.

Programs can be queried. { Just like in SQL! }

Anything that is not in the program is ryf/ue.
Queries may alter the program HSR




Hello World!

hi.



Hello World!

hi. ?- hti.
true.



Hello World!

hi. ?- hti.
true.

hello(world).



Hello World!

hi. ?- hi.
true.
hello(world). ?- hello(world).

true.



Hello World!

hello(world).

?- hti.
true.

?- hello(world).
true.

?- hello(coworld).
false.



Hello World!

Program
hi.

hello(world).

Intery
?- hi.
true.

?- hel
true.

This used to be yes/no,
for 100% toddler com-
patibility

?- hely(coworld).

false.



Hello World!

hello(world).

?- hti.
true.

?- hello(world).
true.

?- hello(coworld).
false.

?- hello(X).
X = world.



Hello World!

hi. ?- hi.
true.
hello(world). ?- hello(world).
true.
2- hello(c \R/arlalzlﬂes: upper-case
false. est: lower-case

?7- hello(X/

X = world.



A small program

location(munich, germany).
location(augsburg, germany).
location(germany, europe).
location(london, unitedkingdom).
location(unitedkingdom, europe).



A small program

Facts Council of Europe
location(munich, germany). (" Schengen Area
location(augsburg, germany). M

location(germany, europe). H= E=] PT=T=)

location(london, unitedkingdo Wngd J

location(unitedkingdom, europ
Baltic Assembly [I:II l=} E

= mmfl

Benelux

[f/j Common [I:I]
\EEA Eurozone Travel Area

0

EFTA

European Union
i l g Monetary agreement
EU Customs Union with the EU




A small program

location(munich, germany).
location(augsburg, germany).
location(germany, europe).
location(london, unitedkingdom).
location(unitedkingdom, europe).



A small program

location(munich, germany).
location(augsburg, germany).
location(germany, europe).
location(london, unitedkingdom).
location(unitedkingdom, europe).

neighbour(X, Y) :-
location(X, Z), location(Y, Z).



A small program

location(munich, germany).
location(augsburg, germany).
location(germany, europe).
location(london, unitedkingdom).
location(unitedkingdom, europe).

is_in(X, Y) :- location(X, Y).
is_in(X, Y) :- location(X, Z), is_in(Z, Y).



Prolog syntax

What's with the weird syntax?



Prolog syntax

What's with the weird syntax?

Is it stolen from Erlang?



Prolog syntax

‘ Hello, Alain! ‘
What's with the weird syntax? \

Is it stolen from Erlang?




Prolog syntax

What's with the weird syntax? Hello, Joe!
Is it stolen from Erlang?




Erlang, inspired by Prolog

€€ The first interpreter was a simple Prolog meta interpreter which
added the notion of a suspendable process to Prolog ... [it] was rapidly 2
modified (and re-written) ...

- Armstrong, Virding, Williams: Use of Prolog for developing a new programming language



talk(lars) :-
joke(funny), % laugh
introduction(prolog),
features(cool),
audience(Questions),
answer(Questions).



Backtracking

best_boy(X) :-
dog(good, X),
colour(dark_brown, X),
behind(X, Y),
colour(light_brown, Y).




Backtracking

best_boy(X) :-
dog(good, X),
colour(dark_brown, X),
behind(X, Y),
colour(light_brown, Y).




Backtracking

best_boy(X) :-
dog(good, X),
colour(dark_brown, X),
behind(X, Y),
colour(light_brown, Y).




Backtracking

best_boy(X) :-
dog(good, X),
colour(dark_brown, X),
behind(X, Y),
colour(light_brown, Y).




Backtracking

best_boy(X) :-
dog(good, X),
colour(dark_brown, X),
behind(X, Y),
colour(light_brown, Y).




Backtracking

best_boy(X) :-
dog(good, X),
colour(dark_brown, X),
behind(X, Y),
colour(light_brown, Y).




Backtracking

best_boy(X) :-
dog(good, X),
colour(dark_brown, X),
behind(X, Y),
colour(light_brown, Y).




Backtracking

best_boy(X) :-
dog(good, X),
colour(dark_brown, X),
behind(X, Y),
colour(light_brown, Y).




Backtracking

best_boy(X) :-
dog(good, X),
colour(dark_brown, X),
behind(X, Y),
colour(light_brown, Y).




Backtracking

best_boy(X) :-
dog(good, X),
colour(dark_brown, X),
behind(X, Y),
colour(light_brown, Y).




Bi-directional computing

f:1—- O



Bi-directional computing




Bi-directional computing
!

?f:l%O

R:(Ix0)— {0,1)



Bi-directional computing

def append[A](xs: List[A], ys: List[A]): List[A]



Bi-directional computing

def append[A](xs: List[A], ys: List[A]): List[A]

append(?Listl, ?List2, ?ListlAndList2)



Bi-directional computing

def appendAll[A](xss: List[List[A]]): List[A]



Bi-directional computing

def appendAll[A](xss: List[List[A]]): List[A]

append_all(+ListOfLists, ?List)



Mode signatures

Argument must be ground, i.e., the argument may not contain a variable anywhere.

Argument must be fully instantiated to a term that satisfies the type. This is not necessarily ground, e.g., the term [_1is a /ist, although
its only member is unbound.

Argumentis an outputargument. Unless specified otherwise, output arguments need not to be unbound. For example, the goal
findall(X, Geal, [TI)isgood style and equivalentto findall(X, Geal, Xs), Xs = [TI*° Note that the determinism specification, e.g.,
" " det" only applies if this argument is unbound.

Argument must be unbound. Typically used by predicates that create * something’ and return a handle to the created object, such as

open/3 which creates a stream.

Argument must be bound to a partial term of the indicated type. Note that a variable is a partial term for any type. Think of the
argument as either inputor outputor bothinput and output. For example, in stream_property(S, reposition(Bool)),the reposition
part of the term is input and the uninstantiated Boolis output.

Argumentis a meta-argument. Implies +. See chapter 6 for more information on module handling.

Argumentis not further instantiated. Typically used for type tests.

Argument contains a mutable structure that may be modified using setarg/3 ornb _setarg/3.




Not a silver bullet ...

?7- member(X, [1, 2, 31), Y =2, X > Y.
X=3,Y=2.



Not a silver bullet ...

?7- member(X, [1, 2, 31), Y =2, X > Y.
X=3,Y=2.

?7- X > Y, member(X, [1, 2, 3]), Y = 2.



Not a silver bullet ...

?7- member(X, [1, 2, 31), Y =2, X > Y.
X=3,Y=2.

?7- X > Y, member(X, [1, 2, 3]), Y = 2.




Not a silver bullet ...

?7- member(X, [1, 2, 31), Y =2, X > Y.
X=3,Y=2.

?- use_module(library(clpfd)).
7- X #> Y, X in 1..3, Y = 2.



Constraint solving

There are five houses.

1.

The English person lives in the red house.

2. The Swedish person owns a dog.

o s W

The Danish person likes to drink tea.
The green house is left to the white house.

The owner of the green house drinks coffee.



Grammars



2
G
£
£
o
O



Grammars



Grammars

S
/\
NP VP
/N N\
D N V NP

S --> np, Vvp.
np --> d, n.

d --> [the].
d --> [a].

vp --> Vv, np.
n --> [dog].

n --> [bone].



Prolog is for parsing?

€€ The programming language ... was born of a project aimed not at
producing a programming language but at processing natural lan- 32
guages; in this case, French.

— Colmerauer, Roussel: The Birth of Prolog



Prolog is for parsing?

€€ The programming language ... was born of a project aimed not at
producing a programming language but at processing natural lan- 32
guages; in this case, French.

— Colmerauer, Roussel: The Birth of Prolog



Parsing

type Parser[A] = String => List[(A, String)]



Parsing

type Parser[A] = String => List[(A, String)]

parse(?A, ?ListIn, ?ListOut)



Parsing

type Parser[A] = String => List[(A, String)]

+ monad syntax

parse(?A, ?ListIn, ?ListOut)



Parsing

type Parser[A] = String => List[(A, String)]

+ monad syntax

parse(?A, ?ListIn, ?ListOut)

+ DCG syntax



talk(lars) :-
joke(funny), % laugh
introduction(prolog),
features(cool),
audience(Questions),
answer(Questions).



Q& A

Lars Hupel

N lars.hupel@innog.com
W @larsr_h

innoQ Deutschland GmbH

Krischerstr. 100 Ohlauver Str. 43 Ludwigstr. 180 E
40789 Monheim a. Rh. 10999 Berlin 63067 Offenbach
Germany Germany Germany

+49 2173 3366-0

Kreuzstr. 16
80331 Munchen
Germany

INNOQ

www.innog.com

innoQ Schweiz GmbH

Gewerbestr. 11 Albulastr. 55
CH-6330 Cham 8048 Zurich
Switzerland Switzerland
+4141743 0111



LARS HUPEL

Consultant
innoQ Deutschland GmbH

Lars enjoys programming in a variety of lan-
guages, including Scala, Haskell, and Rust. He is
known as a frequent conference speaker and one
of the founders of the Typelevel initiative which
is dedicated to providing principled, type-driven
Scala libraries.




Image sources

® Prolog coffee: Marek Kubica

® Shiba row: https://www.pinterest.de/pin/424112489894679416/

® Shiba with mlem: https://www.reddit.com/r/mlem/comments/6tclof/shibe_doing_a_mlem/
® Happy dog: https://www.rover.com/blog/is-my-dog-happy/

® Kid with crossed arms: https:
//www.psychologytoday.com/us/blog/spycatcher/201410/9-truths-exposing-myth-about-body-1language

® Noam Chomsky: https://en.wikipedia.org/wiki/File:Noam_Chomsky_Toronto_2011.jpg

® Alain Colmerauer: https://de.wikipedia.org/wiki/Datei:A-Colmerauer_web-800x423.jpg

® Joe Armstrong: Erlang, the Movie

® Signatures: http://www.swi-prolog.org/pldoc/man?section=preddesc

® Zebra puzzle: StackOverflow contributors (https://stackoverflow.com/q/11122814/4776939)

® Owl: https://www.theloop.ca/angry-owl-terrorizes-oregon-joggers/


https://www.pinterest.de/pin/424112489894679416/
https://www.reddit.com/r/mlem/comments/6tc1of/shibe_doing_a_mlem/
https://www.rover.com/blog/is-my-dog-happy/
https://www.psychologytoday.com/us/blog/spycatcher/201410/9-truths-exposing-myth-about-body-language
https://www.psychologytoday.com/us/blog/spycatcher/201410/9-truths-exposing-myth-about-body-language
https://en.wikipedia.org/wiki/File:Noam_Chomsky_Toronto_2011.jpg
https://de.wikipedia.org/wiki/Datei:A-Colmerauer_web-800x423.jpg
http://www.swi-prolog.org/pldoc/man?section=preddesc
https://stackoverflow.com/q/11122814/4776939
https://www.theloop.ca/angry-owl-terrorizes-oregon-joggers/

