Lars Hupel

February 26th, 2015

“ In object-oriented programming, mock objects are simulated
objects that mimic the behavior of real objects in controlled ways. ’,
Wikipedia: Mock object

“ In mock objects are simulated
objects that mimic the behavior of real objects in controlled ways. ’,
Wikipedia: Mock object

def testTurtle {
val m = mock[Turtle]

(m.setPosition _).expects(10.0, 10.0)
(m.forward _).expects(5.0)
(m.getPosition _).expects().returning(15.0, 10.0)

drawLine(m, (10.0, 10.0), (15.0, 10.0))

«

When you write a mockist test, you are testing the outbound calls
of the SUT to ensure it talks properly to its suppliers ... Mockist
tests are thus more coupled to the implementation of a method.
Changing the nature of calls to collaborators usually cause a
mockist test to break.

Martin Fowler

”»

«

When you write a mockist test, you are testing the outbound calls
of the SUT to ensure it talks properly to its suppliers ... Mockist
tests are thus of a method.
Changing the nature of calls to collaborators usually cause a
mockist test to break.

Martin Fowler

”»

It is pitch black.
You are likely to be eaten by a grue.

... theré's no such thing.

... theré's no such thing.
various techniques avoid the need for mocking altogether

v

v

separation of data and operations
parametric polymorphism
higher-order functions

lightweight interpreters

data Expr =
Literal Int
| Var String
| Sum Expr Expr

evaluate :: Map String Int -> Expr -> Maybe Int

data Expr =
Literal Int
| Var String
| Sum Expr Expr

evaluate :: (String -> Maybe Int) -> Expr -> Maybe Int

data Expr a =
Literal a
| Var String
| Sum (Expr a) (Expr a)

evaluate :: Num a =>
(String -> Maybe a) -> Expr a -> Maybe a

data Expr a t =
Literal a
| var t
| Sum (Expr a t) (Expr a t)

evaluate :: Num a =>
(t -> Maybe a) -> Expr a t -> Maybe a

data Expr a t =
Literal a
| var t
| Sum (Expr a t) (Expr a t)

evaluateM :: (Num a, Monad m) =>
(t -=>ma) -> Expr a t -> m a

“ Always implement things when you actually need them, never
when you just foresee that you need them.
Ron Jeffries about YAGNI

)

Abstraction over Num

> no messing around with the values

> caller knows that only the Num influences the behaviour

Abstraction over Monad

» uniform data access
> Map
» database lookup
> reading from standard input

vars :: Expr a t -> [t]
vars = error ”some traversal”

check :: Expr a (Maybe t) -> Maybe (Expr a t)
check = error ”traversing again?!”

subst :: (t -> Expr a t) -> Expr a t -> Expr a t
subst = error ”seriously?”

vars :: Expr a t -> [t]
vars = Data.Foldable.tolList

check :: Expr a (Maybe t) -> Maybe (Expr a t)
check = Data.Traversable.sequenceA

subst :: (t -> Expr a t) -> Expr a t -> Expr a t
subst = (=<K)

What if we want to log the variable access in evaluateM?

» without early abstraction, many concepts stay hidden
» YAGNI limits thinking

» especially important when building libraries

Interlude: Immutable Data Structures

class Person {
private String name;

public String getName() {

return name;

public void setName(String name) {
this.name = name;

Setter and Getter in Java

company.getITDepartment ()
.getHead ()
.setName (”Grace Hopper?”);

20

Immutable Data in Haskell

data Company = data Department =
Company { Department {
it :: Department boss :: Person
, hr :: Department , budget :: Currency
+ }

data Person =
Person {
name :: String

Updating Immutable Data

company {
it = (it company) {
boss = (boss (it company)) {
name = ”Grace Hopper”

}

22

Updating Immutable Data

company {
it = (it
boss =
name

22

Costate Comonad Coalgebra...?

i PLT Borat
“ PLT_ Borat

Costate Comonad Coalgebra is equivalent of
Java's member variable update technology for
Haskell dl.dropbox.com/u/7810909/medi...

4~ Reply T3 Retweet W Favorite ®®® More

23

Lenses To The Rescue!

The Naive Formulation

data Lens a b = Lens {
get ¢t a -> b
set :¢ a -> b -> a

Lenses To The Rescue!

The Naive Formulation

data Lens a b = Lens {
get ¢t a -> b
set :¢ a -> b -> a

The Advanced Formulation

type Lens a b =
forall f. Functor f => (a -> f a) -=> (b -> f b)

What Have We Gained?

» Composition for free!
set (it . boss . name) ”Grace Hopper” company

» Mocking for free!
lenses are ordinary functions, so can be swapped out

25

THE LiIFE OF A SofFTWARE
ENGINEER. .

CLEAN SLATE. SoLiD
FoUNDATIONS. THIS TiME
T Will BUILD THINGDS THE

MUCH LATER...

OH MY. I’VE
DONE iT AGAIN,
HAVEW'T T 7

data Expr a t =
Literal a
| var t
| Sum (Expr a t) (Expr a t)

27

data Expr a t

Literal a

| var t
| Sum (Expr

> :t Sum

Sum ::

Expr a

t

t) (Expr a t)

-> Expr a t -> Expr a t

27

data Expr a t where

Literal
Var
Sum

a -> Expr a t
t -> Expr a t
Expr a t -> Expr a t -> Expr a t

27

data Expr a t where
Literal :: a -> Expr a t
Var t: t -> Expr a t
Sum tt Expr a t -> Expr a t -> Expr a t

» Sofar: Expr a t containsonly a literals
» type ais constant in the whole expression

» What if we want heterogeneous operations?
> :t even
even :: Integral a => a -> Bool

27

data Expr a where

Literal
Sum

a —> Expr a
Expr a -> Expr a -> Expr a

27

data Expr a where

Literal
Sum
Even

a —> Expr a
Num a => Expr a -> Expr a —-> Expr a
Integral a => Expr a -> Expr Bool

27

jor™
Making Everything Easier!"

data Expr a w
Literal ::
Sum
Even

Literally Even

27

data Expr a where

Literal
Sum
Even

a —> Expr a
Num a => Expr a -> Expr a —-> Expr a
Integral a => Expr a -> Expr Bool

27

data Expr a where
Literal :: a -> Expr a
Sum :: Num a => Expr a -> Expr a -> Expr a
Even :: Integral a => Expr a -> Expr Bool
Cast :: (a => b) -> Expr a -> Expr b

27

» we now have a datatype which represents (some) arithmetic operations
» Apart from evaluating, what can we do with it?

» we now have a datatype which represents (some) arithmetic operations
» Apart from evaluating, what can we do with it?

> print

» countoperations

> optimize

» we now have a datatype which represents (some) arithmetic operations
» Apart from evaluating, what can we do with it?

> print

» countoperations

>

S0, WHAT DOES
THE 10 MONAD MEAN?

WELL .. UH ..

A

» arepresentation of a computation

» .. which interacts with the world

> a of a computation

» .. which interacts with the world

v

v

v

a of a computation
... which interacts with the world
in Haskell: may contain all sorts of effects

in GHC: opague, non-inspectable

v

v

v

v

a of a computation

... which interacts with the world

in Haskell: may contain all sorts of effects
in GHC: opaque, non-inspectable

but: a better world is possible

» calculator: datatype with one constructor per operation
» terminal application: datatype with one constructor per operation?

» read from standard input
> write to standard output

» calculator: datatype with one constructor per operation

» terminal application: datatype with one constructor per operation?
» read from standard input

write to standard output

open file
read from file

vV vy vVvyYy

» calculator: datatype with one constructor per operation
» terminal application: datatype with one constructor per operation?

» open file
» read from file
> .

data Terminal a where
ReadLine :: Terminal String
WriteLine :: String -> Terminal ()

33

type IO a = PauseT (State RealWorld) a

data RealWorld =
RealWorld {
workDir :: FilePath
, files :: Map File Text
, isPermitted :: FilePath -> IOMode -> Bool
, handles :: Map Handle HandleData
, hextHandle :: Integer
, user :: User
, mvars :: Map Integer MValue
, hextMVar :: Integer
, writeHooks :: [Handle -> Text -> I0 ()]

35

» FP provides a set of techniques for abstraction over evaluation

» Use them!

«

» FP provides a set of techniques for abstraction over evaluation

» Use them!

Premature evaluation is the root of all evil.

)

Q&A

¥ larsr.h ©) larsrh

https://twitter.com/larsr_h
https://github.com/larsrh

» Manu Cornet,
http://www.bonkersworld.net/building-software/

» Randall Munroe, https://xkcd.com/1312/

» Thomas Kluyver, Kyle Kelley, Brian E. Granger,
https://github.com/ipython/xkcd-font

http://www.bonkersworld.net/building-software/
https://xkcd.com/1312/
https://github.com/ipython/xkcd-font

