
Functional Mocking

Lars Hupel

February 26th, 2015



What even is “Mocking”?

“ In object-oriented programming, mock objects are simulated
objects that mimic the behavior of real objects in controlled ways.
Wikipedia: Mock object ”

2



What even is “Mocking”?

“ In object-oriented programming, mock objects are simulated
objects that mimic the behavior of real objects in controlled ways.
Wikipedia: Mock object ”

2



Mocking in Scala
Example: ScalaMock

def testTurtle {
val m = mock[Turtle]

(m.setPosition _).expects(10.0, 10.0)
(m.forward _).expects(5.0)
(m.getPosition _).expects().returning(15.0, 10.0)

drawLine(m, (10.0, 10.0), (15.0, 10.0))
}

3



Mocking: Why Not?

“ When you write a mockist test, you are testing the outbound calls
of the SUT to ensure it talks properly to its suppliers ... Mockist
tests are thus more coupled to the implementation of a method.
Changing the nature of calls to collaborators usually cause a
mockist test to break.
Martin Fowler ”

4



Mocking: Why Not?

“ When you write a mockist test, you are testing the outbound calls
of the SUT to ensure it talks properly to its suppliers ... Mockist
tests are thus more coupled to the implementation of a method.
Changing the nature of calls to collaborators usually cause a
mockist test to break.
Martin Fowler ”

4



It is pitch black.
You are likely to be eaten by a grue.



Functional Mocking

... there’s no such thing.

various techniques avoid the need for mocking altogether

6



Functional Mocking

... there’s no such thing.
various techniques avoid the need for mocking altogether

6



Functional Programming

▶ separation of data and operations
▶ parametric polymorphism
▶ higher-order functions
▶ lightweight interpreters

7



A Simple Calculator

data Expr =
Literal Int

| Var String
| Sum Expr Expr

evaluate :: Map String Int -> Expr -> Maybe Int

8





A Simple Calculator

data Expr =
Literal Int

| Var String
| Sum Expr Expr

evaluate :: (String -> Maybe Int) -> Expr -> Maybe Int

10



A Simple Calculator

data Expr a =
Literal a

| Var String
| Sum (Expr a) (Expr a)

evaluate :: Num a =>
(String -> Maybe a) -> Expr a -> Maybe a

10



A (Not So) Simple Calculator

data Expr a t =
Literal a

| Var t
| Sum (Expr a t) (Expr a t)

evaluate :: Num a =>
(t -> Maybe a) -> Expr a t -> Maybe a

10



A (Not So) Simple Calculator

data Expr a t =
Literal a

| Var t
| Sum (Expr a t) (Expr a t)

evaluateM :: (Num a, Monad m) =>
(t -> m a) -> Expr a t -> m a

10





Why This Complexity?

“ Always implement things when you actually need them, never
when you just foresee that you need them.
Ron Jeffries about YAGNI ”

12



What Have We Gained?

Abstraction over Num

▶ no messing around with the values
▶ caller knows that only the Num influences the behaviour

Abstraction over Monad

▶ uniform data access
▶ Map
▶ database lookup
▶ reading from standard input

13



Even More Abstraction

-- get all variables
vars :: Expr a t -> [t]
vars = error ”some traversal”

-- check definedness of all variables
check :: Expr a (Maybe t) -> Maybe (Expr a t)
check = error ”traversing again?!”

-- substitute variables
subst :: (t -> Expr a t) -> Expr a t -> Expr a t
subst = error ”seriously?”

14



Even More Abstraction

-- get all variables
vars :: Expr a t -> [t]
vars = Data.Foldable.toList

-- check definedness of all variables
check :: Expr a (Maybe t) -> Maybe (Expr a t)
check = Data.Traversable.sequenceA

-- substitute variables
subst :: (t -> Expr a t) -> Expr a t -> Expr a t
subst = (=<<)

14





Aspect-Oriented Programming

What if we want to log the variable access in evaluateM?

16





YAGNI Revisited

▶ without early abstraction, many concepts stay hidden
▶ YAGNI limits thinking
▶ especially important when building libraries

18



Interlude: Immutable Data Structures

class Person {
private String name;

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}
}

19



Setter and Getter in Java

company.getITDepartment()
.getHead()
.setName(”Grace Hopper”);

20



Immutable Data in Haskell

data Company = data Department =
Company { Department {

it :: Department boss :: Person
, hr :: Department , budget :: Currency
} }

data Person =
Person {

name :: String
}

21



Updating Immutable Data

company {
it = (it company) {

boss = (boss (it company)) {
name = ”Grace Hopper”

}
}

}

22



Updating Immutable Data

company {
it = (it company) {

boss = (boss (it company)) {
name = ”Grace Hopper”

}
}

}

22



Costate Comonad Coalgebra ...?

23



Lenses To The Rescue!

The Naive Formulation

data Lens a b = Lens {
get :: a -> b
set :: a -> b -> a

}

The Advanced Formulation

type Lens a b =
forall f. Functor f => (a -> f a) -> (b -> f b)

24



Lenses To The Rescue!

The Naive Formulation

data Lens a b = Lens {
get :: a -> b
set :: a -> b -> a

}

The Advanced Formulation

type Lens a b =
forall f. Functor f => (a -> f a) -> (b -> f b)

24



What Have We Gained?

▶ Composition for free!
set (it . boss . name) ”Grace Hopper” company

▶ Mocking for free!
lenses are ordinary functions, so can be swapped out

25





Calculator Revisited

data Expr a t =
Literal a

| Var t
| Sum (Expr a t) (Expr a t)

> :t Sum
Sum :: Expr a t -> Expr a t -> Expr a t

27



Calculator Revisited

data Expr a t =
Literal a

| Var t
| Sum (Expr a t) (Expr a t)

> :t Sum
Sum :: Expr a t -> Expr a t -> Expr a t

27



Calculator Revisited

data Expr a t where
Literal :: a -> Expr a t
Var :: t -> Expr a t
Sum :: Expr a t -> Expr a t -> Expr a t

▶ So far: Expr a t contains only a literals
▶ type a is constant in the whole expression
▶ What if we want heterogeneous operations?
> :t even
even :: Integral a => a -> Bool

27



Calculator Revisited

data Expr a t where
Literal :: a -> Expr a t
Var :: t -> Expr a t
Sum :: Expr a t -> Expr a t -> Expr a t

▶ So far: Expr a t contains only a literals
▶ type a is constant in the whole expression
▶ What if we want heterogeneous operations?
> :t even
even :: Integral a => a -> Bool

27



Calculator Revisited

data Expr a where
Literal :: a -> Expr a
Sum :: Expr a -> Expr a -> Expr a

27



Calculator Revisited

data Expr a where
Literal :: a -> Expr a
Sum :: Num a => Expr a -> Expr a -> Expr a
Even :: Integral a => Expr a -> Expr Bool

27



Calculator Revisited

data Expr a where
Literal :: a -> Expr a
Sum :: Num a => Expr a -> Expr a -> Expr a
Even :: Integral a => Expr a -> Expr Bool

27



Calculator Revisited

data Expr a where
Literal :: a -> Expr a
Sum :: Num a => Expr a -> Expr a -> Expr a
Even :: Integral a => Expr a -> Expr Bool

27



Calculator Revisited

data Expr a where
Literal :: a -> Expr a
Sum :: Num a => Expr a -> Expr a -> Expr a
Even :: Integral a => Expr a -> Expr Bool
Cast :: (a -> b) -> Expr a -> Expr b

27



A Fancy Calculator

▶ we now have a datatype which represents (some) arithmetic operations
▶ Apart from evaluating, what can we do with it?

▶ print
▶ count operations
▶ optimize

28



A Fancy Calculator

▶ we now have a datatype which represents (some) arithmetic operations
▶ Apart from evaluating, what can we do with it?

▶ print
▶ count operations
▶ optimize

28



A Fancy Calculator

▶ we now have a datatype which represents (some) arithmetic operations
▶ Apart from evaluating, what can we do with it?

▶ print
▶ count operations
▶ optimize

28





30



The Essence of IO

▶ a representation of a computation
▶ ... which interacts with the world

▶ in Haskell: may contain all sorts of effects
▶ in GHC: opaque, non-inspectable
▶ but: a better world is possible

31



The Essence of IO

▶ a representation of a computation
▶ ... which interacts with the world

▶ in Haskell: may contain all sorts of effects
▶ in GHC: opaque, non-inspectable
▶ but: a better world is possible

31



The Essence of IO

▶ a representation of a computation
▶ ... which interacts with the world
▶ in Haskell: may contain all sorts of effects
▶ in GHC: opaque, non-inspectable

▶ but: a better world is possible

31



The Essence of IO

▶ a representation of a computation
▶ ... which interacts with the world
▶ in Haskell: may contain all sorts of effects
▶ in GHC: opaque, non-inspectable
▶ but: a better world is possible

31



IO as a DSL

▶ calculator: datatype with one constructor per operation
▶ terminal application: datatype with one constructor per operation?

▶ read from standard input
▶ write to standard output

▶ open file
▶ read from file
▶ ...

32



IO as a DSL

▶ calculator: datatype with one constructor per operation
▶ terminal application: datatype with one constructor per operation?

▶ read from standard input
▶ write to standard output
▶ open file
▶ read from file
▶ ...

32



IO as a DSL

▶ calculator: datatype with one constructor per operation
▶ terminal application: datatype with one constructor per operation?

▶ read from standard input
▶ write to standard output
▶ open file
▶ read from file
▶ ...

32



A Datatype for Terminal IO

data Terminal a where
ReadLine :: Terminal String
WriteLine :: String -> Terminal ()

33





Simulating IO

type IO a = PauseT (State RealWorld) a

data RealWorld =
RealWorld {

workDir :: FilePath
, files :: Map File Text
, isPermitted :: FilePath -> IOMode -> Bool
, handles :: Map Handle HandleData
, nextHandle :: Integer
, user :: User
, mvars :: Map Integer MValue
, nextMVar :: Integer
, writeHooks :: [Handle -> Text -> IO ()]
}

35



Conclusion

▶ FP provides a set of techniques for abstraction over evaluation
▶ Use them!

“ Premature evaluation is the root of all evil. ”

36



Conclusion

▶ FP provides a set of techniques for abstraction over evaluation
▶ Use them!

“ Premature evaluation is the root of all evil. ”
36



Q & A

 larsr h  larsrh

https://twitter.com/larsr_h
https://github.com/larsrh


Image Credits

▶ Manu Cornet,
http://www.bonkersworld.net/building-software/

▶ Randall Munroe, https://xkcd.com/1312/
▶ Thomas Kluyver, Kyle Kelley, Brian E. Granger,
https://github.com/ipython/xkcd-font

38

http://www.bonkersworld.net/building-software/
https://xkcd.com/1312/
https://github.com/ipython/xkcd-font

